📋 Google’s ‘Nested Learning’ paradigm could solve AI’s memory and continual learning problem 완벽가이드
✨ Google’s ‘Nested Learning’ paradigm could solve AI’s memory and continual learning problem
★ 8 전문 정보 ★
Researchers at Google have developed a new AI paradigm aimed at solving one of the biggest limitations in today’s large language models: their inability to learn or update their knowledge after training. The paradigm, called Nested Learning, reframes a model and its training not as a single process,
🎯 핵심 특징
✅ 고품질
검증된 정보만 제공
⚡ 빠른 업데이트
실시간 최신 정보
💎 상세 분석
전문가 수준 리뷰
📖 상세 정보
Researchers at Google have developed a new AI paradigm aimed at solving one of the biggest limitations in today’s large language models: their inability to learn or update their knowledge after training. The paradigm, called Nested Learning, reframes a model and its training not as a single process, but as a system of nested, multi-level optimization problems. The researchers argue that this approach can unlock more expressive learning algorithms, leading to better in-context learning and memory.To prove their concept, the researchers used Nested Learning to develop a new model, called Hope. Initial experiments show that it has superior performance on language modeling, continual learning, and long-context reasoning tasks, potentially paving the way for efficient AI systems that can adapt to real-world environments.The memory problem of large language modelsDeep learning algorithms helped obviate the need for the careful engineering and domain expertise required by traditional machine