11월 20, 2025

✨ Cerebras, MiniMax-M2-REAP-162B-A10B 출시: Long Context Coding Agent를 위한 MiniMax-M2의 메모리 효율적인 버전

★ 298 전문 정보 ★

Cerebras has released MiniMax-M2-REAP-162B-A10B, a compressed Sparse Mixture-of-Experts (SMoE) Causal Language Model derived from MiniMax-M2, using the new Router weighted Expert Activation Pruning (REAP) method. The model keeps the behavior of the original 230B total, 10B active MiniMax M2, while p

🎯 핵심 특징

✅ 고품질

검증된 정보만 제공

⚡ 빠른 업데이트

실시간 최신 정보

💎 상세 분석

전문가 수준 리뷰

📖 상세 정보

Cerebras has released MiniMax-M2-REAP-162B-A10B, a compressed Sparse Mixture-of-Experts (SMoE) Causal Language Model derived from MiniMax-M2, using the new Router weighted Expert Activation Pruning (REAP) method. The model keeps the behavior of the original 230B total, 10B active MiniMax M2, while pruning experts and reducing memory for deployment focused workloads such as coding agents and tool […]
The post Cerebras Releases MiniMax-M2-REAP-162B-A10B: A Memory Efficient Version of MiniMax-M2 for Long Context Coding Agents appeared first on MarkTechPost.

📰 원문 출처

원본 기사 보기

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다